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Introduction Markovian and Interval Unit Commitment Numerical Testing Results
» This work develops a synergistic combination of Markovian and * Wind model considering transmission constraints « CPLEX 12.5.1.0 on a PC laptop with an Intel Core(TM) i7-
interval optimization for unit commitment problems with wind — With congestion, wind generation cannot be aggregated together 28200QM 2.30GHz CPU and 8GB memory
generation and transmission — Wind states for farms at different nodes may not be the same - Illustrative examples
« Motivation: Important to accommodate high penetration of wind * Nearby wind farms: Generation aggregated — Conservativeness — Consider 3 nodes, 2 wind farms, 2 units, and 1 hour
— DOE’s goal: 20% wind by 2030 * Wind farms far apart: States assumed independent o1 1L oo Node 1 How big is transmission capacity
_ Obama’s goal: 80% clean energy by 2035 — A Markov chain per node ﬂ,m@{m} 5. 40%8—|f A7 200 required for feasible W
— In Spain, an unprecedented decrease in wind generation in Feb. 2012 is — With I wind nodes (Markov chains): N' possible global states at time t o= e
equivalent to the sudden down of 6 nuclear plants (4 is not unusual) * Curse of dimensionality! i e Pure Markovian 10
— Texas Emergency Electric Curtailment Plan is called on in Feb. 2008 Key idea: Markov + interval-based optimization X1, =0.004 I._@ Unit 3 OPure '”te“’a:] 12.86 Cof;e“’a“"e!
g i ) _ ) _ L ur approac
e Difficulties: — Markovian analysis to depend on local states; interval analysis to manage Node 2 [pin, pp|= 5,10
— Intermittent/uncertain nature of wind generation extreme combinations of non-local states o) I-80% R
- Cannot be dispatched as conventional units « Local state: Wind generation state at the node under consideration (will be 2m15]2-20% E o
) . . extended into zonal state in future work) Unit 2 @— P (1)=20 Pure Markovian 106 106
« Large uncertainty: Mean Absolute Error (normalized over capacity) of day- R _ __ _ _ [pmin |10, 35 bure interval - -
ahead wind power forecast: 15%~20% — Physical infrastructure supporting this idea: Wind-diesel system Our approach Oere e
— Complicated structures of transmission networks - HC-)W o Comb_lr!e e approachetf,?_DNIde the generation — Complexity — Consider 6 wind farms at different buses, 10 states for each
_ Computational complexity: NP hard problems (dispatch c!ecmon) of a conventional unit into two components | - _ ’
» Markovian component depends on the local state n.  Solution feasibility and modeling accuracy
Literature Review o | — |EEE 30-bus system with 2 wind farms at 40% wind penetration
(™ <[p!t. Ofp, (0] Q™ vi, ¥t vy, v © B .
_ _ N7 L * Free wind curtailment and load shedding at $5,000/MWh penalty
» Stochastic programming » Interval component manages extreme combinations of non-local states «  Stopping MIP gap 0.1% and then 10,000 Monte Carlo runs
— Modeling wind generation — Representative scenarios — Constraints innovatively formulated to guarantee solution feasibility for « Our approach provides 5.23% lower simulation cost than pure interval
— To minimize the expected cost over scenarios all realizations without much complexity «  Our approach is the most accurate, as it has the smallest APE#
— Difficult to choose an appropriate number of scenarios to balance — The effective use of local wind states alleviates the over-conservativeness
computational complexity and solution feasibility of interval optimization CPU time 2 £aq 1min53s
* Robust optimization » System demand constraints Cost (k$) 248.66 280.67 253.40
— Uncertainties modeled by an uncertainty set w/o probabilities — Based on interval optimization [1: As long as min. and max. global states 26y (e 89046 607'4772 605'0212
— To optimize against the worst-case realization are feasible, all other realizations within them will be feasible E(Cost) (k$)  314.89 263.26 250.17
— Min Max conservative and computationally challenging _Z(pi'f"minni (t) + pi',mi (t)j = Z_(piL(t) - p}’,vminni (t)),Vt (4) APE? 21.03% 6.61% 1.29%
i .. i 1 R —_ J STD(cost) (k$) 74.46 33.77 35.13
 Pure interval optimization 1] The minimum local ~ The minimum combination of non-local states (where penalty (k$) 40.8 0 0
— Modeling wind generation — Closed intervals w/o probabilities state at node | ' Otherl nodes are at thLe" mm'vr:um possible states) + Absolute percentage error (APE) = [optimization cost —
— Capturing the bounds of uncertain inputs in different types of constraints, iz(pi,maxni 0+ Piw, (t)) B %(p‘ (1) =Py maxn, (t))’w ®) simulation cost| / simulation cost < 100%)
and making decisions feasible for these bounds » Transmission capacity constraints: [Power flow]| < f,mx - e
ints: i i izati — . . . 0 CPU ti 41
— System demand constraints: As long as min. and max. wind realizations — Flexibility of local conventional generation used to shrink ranges of RHS omputational efriciency Optimi- 1o G'Z; ) 015;/
are feasible, other realizations within them will be feasible — |EEE 118-bus system zation Cost (48 o1 4;
i ! ' ' t :
e E.g., wind farm 1 outputs [10 MW, 40 MW], and wind farm 2 [20 MW, 50 > a pi (1) < {1~ maX{Zaf (p}’,vni (D) + pi'f/'ni - pi (t))}VLVt (6) with 3 wind farms UG Cost (E;)( ) 1 83
MW]. Total wind generation = [30 MW, 90 MW]. ! ! pr— 090,97
 System demand = 200 MW. Net system demand = [110 MW, 170 MW] Markovian nodal injection = Pi!\r/,'i (t) Simula- e Y-
: : : : - (containing decision variables) tion
« If a set of committed units with p.™" and p."# can meet the 110 MW and * Ramp rate constraints STD(cost) (k$) 24.64
170 MW, can it satisfy possible demand at 140 MW? — Required for possible local states, local state transitions, p{, (1), and Py,
— 1QQ1 1 1 . < T, max . . . . i
Transmission capacity constraints: [Power flow| < . The objective function: To approximate the expected cost w/o Conclusion
« Aline flow is a linear combination of nodal injections weighted by much complexit _ o _
generation shift factors (GSFs can be + or -) _ P y o o * An important but difficult issue
fL(t) = Zall(pil 0+ pV (1) - piL(t))’vl’Vt (1) — Aweighted sum of extreme realizations and the expected realization + Hybrid Markovian and interval optimization to overcome the
| i - - - -
« “Passively” capture bounds of uncertain inputs min % IZ { g [Wni,mi (t)Ci(pi'Y'n )+ pil,mi (t)) Wy (t)Ci(pi'Y'n )+ piI’Mi (t)ﬂ complexity caused by transmission constraints
Salp (1)< & _ ma){z af[p}"’ - p- (t)ﬂ,w,w 2 =1i=1] -1 NL} (7) — Markovian analysis to depend on local state/reduce conservativeness
i i Pre-computed based on we (OC (P12 )+ 6 08 + X (DS Weights adding up to 1 — Interval analysis to ensure feasibility against realizations
Interval arithmetic : : : . ..
— Obijective function: To minimize the cost of the expected realization * Anon-linear MIP formulation * Problem transformed into a linear form based on monotonicity, and
— Linear and efficient via interval arithmetic: conservative — Non-linearity lies in max/min (negative flow direction) operations in (6) then solved efficiently by using branch-and-cut
_ _ o o _  Opens a new and effective way to address stochastic problems w/o
Previous Work - Markovian Optimization w/o Transmission [2] Solution Methodology — Branch-and-cut scenario analysis and avoid over-conservativeness
* Model aggregated wind generation — A Markov chain * Max/Min operations transformed into a linear form
— Given the present, the future iIs independent of the past — ldea: Analyze the monotonicity of Markovian nodal injections w.r.t. local References
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— Advantage: State at a time instant summarizes the information of all  Including (8) as constraints
previous Instants in a probabilistic sense for reduced complexity «  Substituting the min/max operations with corresponding states I hanle vinn )

» Stochastic UC depends on states instead of scenarios « State transition matrices given and state probabilities pre-computed




